Code, Process, and VM Migration

Motivation

How does migration occur?

Resource migration

Agent-based system

Details of process migration

Migration of Virtual Machines

University of
Massachusetts | CS677: Distributed OS Lec. 09 1
Amherst

Part 1: Migration Introduction

» Key reasons: performance and flexibility

¢ Process migration (aka strong mobility)
* Improved system-wide performance — better utilization of system-wide resources
* Examples: Condor, DQS

e Code migration (aka weak mobility)

» Shipment of server code to client — filling forms (reduce communication, no need to pre-link
stubs with client)

* Ship parts of client application to server instead of data from server to client (e.g., databases)
* Improve parallelism — agent-based web searches
University of

Massachusetts | CS677: Distributed OS Lec. 09 2
Ambherst

Motivation
* Flexibility
* Dynamic configuration of distributed system

* Clients don’t need preinstalled software — download on demand

2. Client and server
communicate

/ Server
< _ > D
I |

1. Client fetches code

Client

Service-specific
client-side code

. . Code repositor
University of P Y

Massachusetts | CS677: Distributed OS
Ambherst

Lec. 09

3

Migration models

¢ Process = code seg + resource seg + execution seg
¢ Weak versus strong mobility

* Weak => transferred program starts from initial state
¢ Sender-initiated versus receiver-initiated
* Sender-initiated

* migration initiated by machine where code resides

¢ Client sending a query to database server
¢ Client should be pre-registered

* Receiver-initiated

¢ Migration initiated by machine that receives code

¢ Java applets, javascript

¢ Receiver can be anonymous

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 09

4

Who executes migrated entity?

e Code migration:

e Execute in a separate process

* [Applets] Execute in target process
e Process migration

* Remote cloning

* Migrate the process

University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

Models for Code Migration

Execute at
Sender-initiated - target process
mobility . Execute in

- separate process
Weak mobility Execute at
\ Receiver-initiated — target process
mobility T~ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P
mobility
/ T~ Clone process

Strong mobility
Migrate pr:
Receiver-initiated _— 19 o Process

mobility ~

Clone process

/

 Alternatives for code migration.

University of
Massachusetts | CS677: Distributed OS Lec. 09
Amherst

Do Resources Migrate?

* Depends on resource to process binding
By identifier: specific web site, ftp server
* By value: Java libraries
* By type: printers, local devices
¢ Depends on type of “attachments”
* Unattached to any node: data files
* Fastened resources (can be moved only at high cost)
» Database, web sites
* Fixed resources

¢ Local devices, communication end points

University of
Massachusetts | CS677: Distributed OS Lec. 09 7
Amherst
Resource-to machine binding
Unattached Fastened Fixed
Process-to-
resource By identifier MV (or GR) GR (OI’ MV) GR
binding By value CP (or MV, GR) GR (or CP) GR
By type RB (or GR, CP) RB (or GR, CP) RB (or GR)
» Actions to be taken with respect to the references to local resources when migrating code to another machine.
* GR: establish global system-wide reference
* MV: move the resources
* CP: copy the resource
¢ RB: rebind process to locally available resource
University of
Massachusetts | CS677: Distributed OS Lec. 09 8

Ambherst

Migration in Heterogeneous Systems

» Systems can be heterogeneous (different architecture, OS)
¢ Support only weak mobility: recompile code, no run time information
¢ Strong mobility: recompile code segment, transfer execution segment [migration stack]

« Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled
Local stack procedure call onto
operations B migration stacl

University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

Part 2: Virtual Machine Migration

VMs can be migrated from one physical machine to another

Migration can be live - no application downtime

Iterative copying of memory state

How are network connections handled?

Inherently migrates the OS and all its processes

University of
Massachusetts | CS677: Distributed OS Lec. 09
Amherst

Pre-Copy VM Migration

e 1. Enable dirty page tracking
e 2. Copy all memory pages to destination
* 3. Copy memory pages dirtied during the previous copy again

* 4. Repeat 3rd step until the rest of memory pages is small.

+ 5.Stop VM 1N

e 6. Copy the rest of memory pages and V_/
* non-memory VM states 84

e 7. Resume VM at destination Machine A Machine B

8. ARP pkt to switch | |

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

University of

: Distribute ec.
Massachusetts | CS677: Distributed OS Lec.09 11
Ambherst

Post-Copy VM Migration

e 1. Stop VM

* 2. Copy non-memory VM states to destination
* 3. Resume VM at destination

* 4. Copy memory pages on-demand/background

* Async page fault can be utilized RAM
HE=
o1

Copy memory pages

*On-demand(network fault)

*background(precache)
University of
Massachusetts | CS677: Distributed OS lec.09 12
Amherst

VM Migration Time

Copy VM memory before switching the execution host

Round 2 Round N sto N
oun \ \ p resume 5
Precopy £ §
Precopy Round 1 g <
— R 8
Performance degradation Down time é
__ Due to dirty page tragking - 7‘6
Total migration time ;:f
time £
Stop resume 13_
[+
Postcopy —:
Postcopy Demand/pre paging(with async PF) 8
H'J — " 3
Down time Performance degradation §
- Due to network fault - 3
Total migration time -
. . Copy VM memory after switching the execution host
University of
Massachusetts | CS677: Distributed OS Lec. 09 13
Ambherst
-] n u
Part 3: Container Migration
* Migration techniques
e Snapshots
e Checkpoint-Resume (CRIU)
University of
Massachusetts | CS677: Distributed OS lec.09 14

Ambherst

Migration Methods

e Cold migration: migrate a VM / container that is shutdown
* Copy image and data files, start on new machine.
* No state is preserved
e Warm migration: migrate state from previous instance
e Suspend running VM/container to disk
e Copy image, data, suspended memory state
* Resume execution of suspended VM

» preservers state, but incurs downtime
¢ Hot/live migration: migrate state with no downtime

» Copy state while VM executes; no downtime

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 09

15

Snapshots

e Snapshot: point-in-time copy
* General concept in operating and distributed systems
* Snapshots preserve objects (file, disk, VM) as they existed at time of snapshot
* VM Snapshots
e preserves VM state: memory or disk state
e Like a backup
* Virtual snapshots: make a virtual copy
* use copy-on-write to make changes to original
* Snapshots useful for roll-back or migration

¢ Snapshots are also known as checkpoints

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 09

16

Checkpoint and Restore

e Warm container migration: Checkpoint and Restore
* Pause container execution
* Checkpoint (save) memory contents of container to disk
* Copy checkpoint to new machine (memory + disk image)

¢ Resume execution on new machine

University of

: Distribute ec. 17
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

Linux CRIU

¢ Linux CRIU (Checkpoint Restore In Userspace)
* Used for warm or live migration, snapshots, debugging
* Works for individual process and containers migration
* Uses /proc file system to gather all info about each process in the container
* Save process state (file descriptors, memory state etc)
¢ Copy saved state to another machine
* CRIU restorer
* Use fork to recreate processes to be restored
* Restore resources; for containers, restore namespace
e TCP repair to restore network sockets on same machine
¢ Can migrate active sockets only if IP address moves
* Use virtual network device in containers and move it
University of

Massachusetts | CS677: Distributed OS lec.09 18
Ambherst

Case Study: Viruses and Malware

* Viruses and malware are examples of mobile code
* Malicious code spreads from one machine to another
* Sender-initiated:
* proactive viruses that look for machines to infect
* Autonomous code
* Receiver-initiated

* User (receiver) clicks on infected web URL or opens an infected email
attachment
University of

Massachusetts | CS677: Distributed OS
Ambherst

Lec. 09

19

